REFERENCES

1. Gafurov SA, Klochkov EV. Autonomous unmanned underwater vehicles development tendencies. Procedia Eng 2015;106:141-8.

2. Li D, Wang P, Du L. Path planning technologies for autonomous underwater vehicles-a review. IEEE Access 2019;7:9745-68.

3. Burdinsky IN. Guidance algorithm for an autonomous unmanned underwater vehicle to a given target. Optoelectron Instrument Proc 2012;48:69-74.

4. Craven PJ, Sutton R, Burns RS. Control strategies for unmanned underwater vehicles. J Navigation 1998;51:79-105.

5. Skaddan R, Alhashemi N, Zaini M, Khuraishi M. Design of an improved decision search system for missing aircrafts: MH370 case study the deconstruction of houdini's greatest act. In: 2017 Systems and Information Engineering Design Symposium (SIEDS). Piscataway, NJ, USA; 2017. pp. 73-8.

6. Roberts GN, Sutton R. Advances in unmanned marine vehicles. Institution of Engineering and Technology 2006.

7. Sun P, Boukerche A. Modeling and analysis of coverage degree and target detection for autonomous underwater vehicle-based system. IEEE Trans Veh Technol 2018;67:9959-71.

8. Huang H, Tang Q, Li J, et al. A review on underwater autonomous environmental perception and target grasp, the challenge of robotic organism capture. Ocean Eng 2020;195.

9. Petillo S, Schmidt H. Exploiting adaptive and collaborative auv autonomy for detection and characterization of internal waves. IEEE J Ocean Eng 2014;39:150-64.

10. Panda M, Das B, Subudhi B, Pati BB. A comprehensive review of path planning algorithms for autonomous underwater vehicles. Int J Autom Comput 2020;17:321-52.

11. Hadi B, Khosravi A, Sarhadi P. A review of the path planning and formation control for multiple autonomous underwater vehicles. J Intell Robot Syst 2021;101.

12. Parker L. Heterogeneous multi-robot cooperation[Ph. D. Thesis]. Massachusetts Institute of Technology; 1994.,.

13. Kulkarni IS, Pompili D. Task allocation for networked autonomous underwater vehicles in critical missions. IEEE J Sel Areas Commun 2010;28:716-27.

14. Mataric MJ. Minimizing complexity in controlling a mobile robot population. In: Proceedings. 1992 IEEE International Conference on Robotics And Automation (Cat. No. 92CH3140-1). Los Alamitos, CA, USA; 1992. pp. 830-5.

15. Miyata N, Ota J, Arai T, Asama H. Cooperative transport by multiple mobile robots in unknown static environments associated with real-time task assignment. IEEE Trans Robot Autom 2002;18:769-80.

16. Turner RM. Context-mediated behavior for intelligent agents. International Journal of Human Computer Studies 1998;48:307-30.

17. Dia H. An agent-based approach to modelling driver route choice behaviour under the influence of real-time information. Transportation Research Part C: Emerging Technologies 2002;10:331-49.

18. Ahmed A, Patel A, Brown T, et al. Task assignment for a physical agent team via a dynamic forward/reverse auction mechanism. In: International Conference on Integration of Knowledge Intensive Multi-Agent Systems (IEEE Cat. No. 05EX1033). Piscataway, NJ, USA; 2005. pp. 311-7.

19. Akkiraju R, Keskinocak P, Murathy S, Wu F. An agent-based approach for scheduling multiple machines. Appl Intell, Int J Artif Intell Neural Netw Complex Probl-Solving Technol 2001;14:135-44.

20. Atkinson ML. Results analysis of using free market auctions to distribute control of UAVs. In: Collection of Technical Papers - AIAA 3rd "Unmanned-Unlimited" Technical Conference, Workshop, and Exhibit. vol. 2. Chicago, IL, United states; 2004. pp. 803-11.

21. Wahl T, Howell KC. Autonomous guidance algorithm for multiple spacecraft and formation reconfiguration maneuvers. In: Advances in the Astronautical Sciences. vol. 158. Napa, CA, United states; 2016. pp. 1939-56.,.

22. Yao P, Qi S. Obstacle-avoiding path planning for multiple autonomous underwater vehicles with simultaneous arrival. Sci China Technol Sci 2019;62:121-132.

23. Yao P, Zhao Z, Zhu Q. Path planning for autonomous underwater vehicles with simultaneous arrival in ocean environment. IEEE Systems Journal 2020;Sep; 14:3185-93.

24. Tolmidis AT, Petrou L. Multi-objective optimization for dynamic task allocation in a multi-robot system. Engineering Applications of Artificial Intelligence 2013;26:1458-68.

25. Boveiri HR. An incremental ant colony optimization based approach to task assignment to processors for multiprocessor scheduling. Front Inform Technol Electron Eng 2017;18:498-510.

26. Liu C, Kroll A. Memetic algorithms for optimal task allocation in multi-robot systems for inspection problems with cooperative tasks. Soft Comput 2015;19:567-84.

27. Kohonen T. Analysis of a simple self-organizing process. Biol Cybern 1982;44:135-40.

28. Zhu A, Yang SX. A neural network approach to dynamic task assignment of multirobots. IEEE Trans Neural Netw 2006;17:1278-87.

29. Zhu A, Yang SX. An improved SOM-based approach to dynamic task assignment of multi-robots. In: Proceedings of the World Congress on Intelligent Control and Automation (WCICA); 2010. pp. 2168-73.

30. Huang H, Zhu D, Ding F. Dynamic task assignment and path planning for multi-AUV system in variable ocean current environment. J Intell Robot Syst 2014;74:999-1012.

31. Chow B. Assigning closely spaced targets to multiple autonomous underwater vehicles[Ph. D. Thesis]. University of Waterloo; 2009.,.

32. Zhu D, Huang H, Yang SX. Dynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace. IEEE Trans Cybern 2013;43:504-14.

33. D'Amato E, Nardi VA, Notaro I, Scordamaglia V. A Visibility Graph approach for path planning and real-time collision avoidance on maritime unmanned systems. In: 2021 IEEE International Workshop on Metrology for the Sea: Learning to Measure Sea Health Parameters, MetroSea 2021 - Proceedings. Virtual, Online, Italy; 2021. pp. 400-5.

34. Lam SK, Sridharan K, Srikanthan T. VLSI-efficient schemes for high-speed construction of tangent graph. Robot Auton Syst 2005;51:248-60.

35. Magid E, Lavrenov R, Svinin M, Khasianov A. Combining voronoi graph and spline-based approaches for a mobile robot path planning. In: Informatics in Control, Automation and Robotics. 14th International Conference, ICINCO 2017. Revised Selected Papers: Lecture Notes in Electrical Engineering (LNEE 495). Cham, Switzerland; 2020. pp. 475-96.,.

36. Wang J, Meng MQH. Optimal path planning using generalized voronoi graph and multiple potential functions. IEEE Trans Ind Electron 2020;67:10621-30.

37. Dijkstra E. Communication with an automatic computer[Ph. D. Thesis]. University of Amsterdam, Netherlands; 1959.,.

38. Peter EH, Nils JN, Bertram R. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 1968;SSC-4:100-7.

39. Wu Y, Low KH, Lv C. Cooperative path planning for heterogeneous unmanned vehicles in a search-and-track mission aiming at an underwater target. IEEE Trans Veh Technol 2020;69:6782-87.

40. Singh Y, Sharma S, Sutton R, Hatton D, Khan A. A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents. Ocean Engineering 2018;169:187-201.

41. Khatib O. Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation. vol. 2; 1985. pp. 500-5.

42. Zhu D, Yang SX. Path planning method for unmanned underwater vehicles eliminating effect of currents based on artificial potential field. J Navig 2021;74:955-67.

43. Ralli E, Hirzinger G. Fast path planning for robot manipulators using numerical potential fields in the configuration space. In: IROS '94. Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems. Advanced Robotic Systems and the Real World (Cat. No. 94CH3447-0). vol. vol. 3. New York, NY, USA; 1994. pp. 1922-9.

44. Zhou Z, Wang J, Zhu Z, Yang D, Wu J. Tangent navigated robot path planning strategy using particle swarm optimized artificial potential field. Optik 2018;158:639-51.

45. Lin Z, Yue M, Wu X, Tian H. An improved artificial potential field method for path planning of mobile robot with subgoal adaptive selection. In: Intelligent Robotics and Applications. 12th International Conference, ICIRA 2019. Proceedings: Lecture Notes in Artificial Intelligence (LNAI 11740). vol. pt. I. Cham, Switzerland; 2019. pp. 211-20.

46. Xin L, Zhan-Qing W, Xu-Yang C. Path planning with improved artificial potential field method based on decision tree. In: 2020 27th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). Piscataway, NJ, USA; 2020. p. 5 pp.

47. Abdur Rahman M, Abul Kalam Azad M. To escape local minimum problem for multi-agent path planning using improved artificial potential field-based regression search method. In: ACM International Conference Proceeding Series. Singapore, Singapore; 2017. pp. 371-6.

48. Alvarez A, Caiti A, Onken R. Evolutionary path planning for autonomous underwater vehicles in a variable ocean. IEEE J Oceanic Eng 2004;29:418-29.

49. Cheng CT, Fallahi K, Leung H, Tse CK. A genetic algorithm-inspired UUV path planner based on dynamic programming. IEEE Trans Syst Man Cybern, C, Appl Rev 2012;42:1128-34.

50. Ma YN, Gong YJ, Xiao CF, Gao Y, Zhang J. Path planning for autonomous underwater vehicles: an ant colony algorithm incorporating alarm pheromone. IEEE Trans Veh Technol 2019;68:141-54.

51. Han G, Zhou Z, Zhang T, et al. Ant-colony-based complete-coverage path-planning algorithm for underwater gliders in ocean areas with thermoclines. IEEE Trans Veh Technol 2020;69:8959-71.

52. Mo H, Xu L. Research of biogeography particle swarm optimization for robot path planning. Neurocomputing 2015;148:91-9.

53. Lee CC. Fuzzy logic in control systems: fuzzy logic controller. I. IEEE Trans Syst Man Cybern 1990;20:404-18.

54. Lee CC. Fuzzy logic in control systems: fuzzy logic controller. Ⅱ. IEEE Trans Syst Man Cybern 1990;20:419-35.

55. Kim YG, Bui LD. An obstacle-avoidance technique for autonomous underwater vehicles based on BK-products of fuzzy relation. Fuzzy Sets Syst 2006;157:560-77.

56. Ali F, Kim EK, Kim YG. Type-2 fuzzy ontology-based semantic knowledge for collision avoidance of autonomous underwater vehicles. Inf Sci 2015;295:441-64.

57. LeBlanc K, Saffiotti A. Multirobot object localization: a fuzzy fusion approach. IEEE Trans Syst Man Cybern B, Cybern 2009;39:1259-76.

58. Ling S. A real-time collision-free path planning of a rust removal robot using an improved neural network. J Shanghai Jiaotong Univ, Sci 2017;22:633-40.

59. Ghatee M, Mohades A. Motion planning in order to optimize the length and clearance applying a Hopfield neural network. Expert Syst Appl 2009;36:4688-95.

60. Li H, Yang SX, Biletskiy Y. Neural network based path planning for a multi-robot system with moving obstacles. In: 2008 IEEE International Conference on Automation Science and Engineering (CASE 2008). Piscataway, NJ, USA; 2008. pp. 163-8.

61. Zhu D, Yang SX. Bio-inspired neural network-based optimal path planning for UUVs under the effect of ocean currents. IEEE Trans Veh Technol 2021; doi: 10.1109/TIV.2021.3082151.

62. Noguchi Y, Maki T. Path planning method based on artificial potential field and reinforcement learning for intervention AUVs. In: 2019 IEEE Underwater Technology (UT). Piscataway, NJ, USA; 2019. pp. 1-6.

63. Li Z, Luo X. Autonomous underwater vehicles (AUVs) path planning based on Deep Reinforcement Learning. In: 2021 11th International Conference on Intelligent Control and Information Processing (ICICIP). Piscataway, NJ, USA; 2021. pp. 125-9.

64. Wang Z, Zhang S, Feng X, Sui Y. Autonomous underwater vehicle path planning based on actor-multi-critic reinforcement learning. Proc Inst Mech Eng, I, J Syst Control Eng 2021;235:1787-96.

65. Batalin MA, Sukhatme GS. Spreading out: a local approach to multi-robot coverage. In: Distributed Autonomous Robotic Systems 5. Tokyo; 2002. pp. 373-82.,.

66. Parlaktuna O, Sipahioglu A, Kirlik G, Yazici A. Multi-robot sensor-based coverage path planning using capacitated arc routing approach. In: 2009 IEEE International Conference on Control Applications (CCA). Piscataway, NJ, USA; 2009. pp. 1146-51.

67. Janchiv A, Batsaikhan D, Kim Gh, Lee SG. Complete coverage path planning for multi-robots based on. In: 2011 11th International Conference on Control, Automation and Systems; 2011. pp. 824-27.,.

68. Rekleitis I, New A, Rankin E, Choset H. Efficient boustrophedon multi-robot coverage: an algorithmic approach. Ann Math Artif Intell 2008;52:109-42.

69. Hazon N, Kaminka GA. On redundancy, efficiency, and robustness in coverage for multiple robots. Robotics and Autonomous Systems 2008;56:1102-14.

70. Zheng X, Koenig S. Robot coverage of terrain with non-uniform traversability. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA; 2007. pp. 3757-64.

71. Kapanoglu M, Alikalfa M, Ozkan M, Yazici A, Parlaktuna O. A pattern-based genetic algorithm for multi-robot coverage path planning minimizing completion time. J Intell Manuf 2012;23:1035-45.

72. Yang SX, Luo C. A neural network approach to complete coverage path planning. IEEE Trans Syst Man Cybern B Cybern 2004;34:718-24.

73. Yao P, Zhao Z. Improved Glasius bio-inspired neural network for target search by multi-agents. Information Sci 2021;568:40-53.

74. Cai W, Zhang M, Zheng YR. Task assignment and path planning for multiple autonomous underwater vehicles using 3D dubins curves. Sensors 2017;17:1607-26.

75. Yao P, Qiu L, Qi J, Yang R. AUV path planning for coverage search of static target in ocean environment. Ocean Eng 2021;241.

76. Song D, Yao P. Search for static target in nonwide area by AUV: a prior data-driven strategy. IEEE Syst J 2021;15:3185-8.

77. Yao P, Zhu Q, Zhao R. Gaussian mixture model and self-organizing map neural-network-based coverage for target search in curve-shape area. IEEE Trans Cybern 2022;52:3971-83.

78. Sun P, Boukerche A. Modeling and analysis of coverage degree and target detection for autonomous underwater vehicle-based system. IEEE Trans Veh Technol 2018;67:9959-71.

79. Bacha S, Saadi R, Ayad MY, Aboubou A, Bahri M. A review on vehicle modeling and control technics used for autonomous vehicle path following. In: 2017 International Conference on Green Energy Conversion Systems (GECS). Piscataway, NJ, USA; 2017. pp. 1-6.

80. Liu X, Zhang M, Rogers E. Trajectory tracking control for autonomous underwater vehicles based on fuzzy re-planning of a local desired trajectory. IEEE Trans Veh Technol 2019;68:11657-67.

81. Ray S, Bhowal R, Patel P, Panaiyappan AK. An overview of the design and development of a 6 dof remotely operated vehicle for underwater structural inspection. In: 2021 International Conference on Communication, Control and Information Sciences (ICCISC). Piscataway, NJ, USA; 2021. pp. 1-6.

82. Shen C, Shi Y, Buckham B. Trajectory tracking control of an autonomous underwater vehicle using lyapunov-based model predictive control. IEEE Trans Ind Electron 2018;65:5796-805.

83. Li J, Xu Z, Zhu D, et al. Bio-inspired intelligence with applications to robotics: a survey. Intell Robot 2022;1:58-83.

84. Zhu D, Sun B. The bio-inspired model based hybrid sliding-mode tracking control for unmanned underwater vehicles. Eng Appl Artif Intell 2013;26:2260-9.

85. Sun B, Zhang W, Song A, Zhu X, Zhu D. Trajectory tracking and obstacle avoidance control of unmanned underwater vehicles based on MPC. In: IEEE 8th International Conference on Underwater System Technology: Theory and Applications (USYS). Piscataway, NJ, USA; 2018. pp. 1-6.

86. Wan L, Sun N, Liao YL. Backstepping control method for the trajectory tracking for the underactuated autonomous underwater vehicle. AMR2013; 798-799: 484-8.

87. Karkoub M, Wu HM, Hwang CL. Nonlinear trajectory-tracking control of an autonomous underwater vehicle. Ocean Eng 2017;145:188-98.

88. Yang SX, Meng MQH. Real-time collision-free motion planning of a mobile robot using a Neural Dynamics-based approach. IEEE Trans Neural Netw 2003;14:1541-52.

89. Li T, Zhao R, Chen CLP, Fang L, Liu C. Finite-time formation control of under-actuated ships using nonlinear sliding mode control. IEEE Trans Cybern 2018;48:3243-53.

90. Qin J, Zhang G, Zheng WX, Kang Y. Adaptive sliding mode consensus tracking for second-order nonlinear multiagent systems with actuator faults. IEEE Trans Cybern 2019;49:1605-15.

91. Zaihidee FM, Mekhilef S, Mubin M. Robust speed control of PMSM using sliding mode control (SMC)-a review. Energies 2019;12:1669-96.

92. Dhanasekar R, Ganesh Kumar S, Rivera M. Sliding mode control of electric drives/review. In: 2016 IEEE International Conference on Automatica (ICA-ACCA). Piscataway, NJ, USA; 2016. pp. 1-7.

93. Liu H, Zhang T. Fuzzy sliding mode control of robotic manipulators with kinematic and dynamic uncertainties. J DYN SYST-T ASME 2012;134.

94. Slotine JJE, Coetsee JA. Adaptive sliding controller synthesis for non-linear systems. Int J Control 1986;43:1631-51.

95. Xu Z, X Yang S, Gadsden SA, Li J, Zhu D. Backstepping and sliding mode control for AUVs aided with bioinspired neurodynamics. In: 2021 IEEE International Conference on Robotics and Automation (ICRA). Xi'an, China; 2021. pp. 2113-9.

96. Bai G, Meng Y, Liu L, Luo W, Gu Q. Review and comparison of path tracking based on model predictive control. Electronics, 2019, 8: 1077 (32 pp. ).

97. Dong L, Yan J, Yuan X, He H, Sun C. Functional nonlinear model predictive control based on adaptive dynamic programming. IEEE Trans Cybern 2019;49:4206-18.

98. Liu L, He Y, Han C. Review of model predictive control methods for time-delay systems. In: Proceedings of 2020 Chinese Intelligent Systems Conference. Lecture Notes in Electrical Engineering (LNEE 705). vol. 1. Singapore; 2021. pp. 624-33.

99. Gutierrez B, Kwak SS. Modular multilevel converters (MMCs) controlled by model predictive control with reduced calculation burden. IEEE Trans Power Electron 2018;33:9176-87.

100. Na J, Huang Y, Wu X, Su S, Li G. Adaptive finite-time fuzzy control of nonlinear active suspension systems with input delay. IEEE Trans Cybern 2020;50:2639-50.

101. Wang F, Chen B, Sun Y, Gao Y, Lin C. Finite-time fuzzy control of stochastic nonlinear systems. IEEE Trans Cybern 2020;50:2617-26.

102. Wang N, Karimi HR. Successive waypoints tracking of an underactuated surface vehicle. IEEE Trans Ind Inf 2020;16:898-908.

103. Hayashibe M, Shimoda S. Synergetic learning control paradigm for redundant robot to enhance error-energy index. IEEE Trans Cogn Dev Syst 2018;10:573-84.

104. Li Y, Tong S, Li T. Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation. IEEE Trans Cybern 2015;45:2299-308.

105. Wang H, Liu PX, Niu B. Robust fuzzy adaptive tracking control for nonaffine stochastic nonlinear switching systems. IEEE Trans Cybern 2018;48:2462-71.

106. Zhu D, Hua X, Sun B. A neurodynamics control strategy for real-time tracking control of autonomous underwater vehicle. J Navig 2013;67:113-27.

107. Sun B, Zhu D, Ding F, Yang SX. A novel tracking control approach for unmanned underwater vehicles based on bio-inspired neurodynamics. IJ Mar Sci Tech-japan 2012;18:63-74.

108. Sun B, Zhu D, Yang SX. A bioinspired filtered backstepping tracking control of 7000-m manned submarine vehicle. IEEE Trans Ind Electron 2014;61:3682-93.

109. Jiang Y, Guo C, Yu H. Robust trajectory tracking control for an underactuated autonomous underwater vehicle based on bioinspired neurodynamics. Int J Adv Robot Syst 2018;15:172988141880674.

110. Tavanaei-Sereshki Z, Ramezani-al MR. Quantum genetic sliding mode controller design for depth control of an underwater vehicle. Meas 2018;51:336-48.

111. Zhang J, Liu M, Zhang S, Zheng R. Robust global route planning for an autonomous underwater vehicle in a stochastic environment. Front Inf Technol Electron Eng 2022; doi: 10.1631/FITEE.2200026.

112. Shen C, Shi Y, Buckham B. Trajectory tracking control of an autonomous underwater vehicle using lyapunov-based model predictive control. IEEE Trans Ind Electron 2018;65:5796-5805.

113. Li D, Wang P, Du L. Path planning technologies for autonomous underwater vehicles-a review. IEEE Access 2019;7:9745-768.

114. Karkoub M, Wu HM, Hwang CL. Nonlinear trajectory-tracking control of an autonomous underwater vehicle. Ocean Eng 2017;145:188-98.

115. Cao X, Tian Y, Ji X, Qiu B. Fault-tolerant controller design for path following of the autonomous vehicle under the faults in braking actuators. IEEE Trans Transp Electrification 2021;7:2530-40.

116. Seto M, Svendsen K. Advanced AUV fault management. In: Autonomous Underwater Vehicles: Design and practice. The Institution of Engineering and Technology; 2020. pp. 419-45.,.

117. Kadiyam J, Parashar A, Mohan S, Deshmukh D. Actuator fault-tolerant control study of an underwater robot with four rotatable thrusters. Ocean Eng 2020;197.

118. Zhu G, Ma Y, Li Z, Malekian R, Sotelo M. Event-triggered adaptive neural fault-tolerant control of underactuated MSVs with input saturation. IEEE Trans Intell Transp Syst 2021; doi: 10.1109/TITS.2021.3066461.

119. Qi X, Qi J, Theilliol D, et al. A review on fault diagnosis and fault tolerant control methods for single-rotor aerial vehicles. J Intell Robot Syst 2014;73:535-55.

120. Li T, Li G, Zhao Q. Adaptive fault-tolerant stochastic shape control with application to particle distribution control. IEEE Trans Syst Man Cybern, Syst 2015;45:1592-1604.

121. Lu K, Xia Y, Yu C, Liu H. Finite-time tracking control of rigid spacecraft under actuator saturations and faults. IEEE Trans Autom Sci Eng 2016;13:368-81.

122. Meyer RT, Johnson SC, DeCarlo RA, Pekarek S, Sudhoff SD. Hybrid electric vehicle fault tolerant control. J Dyn Syst-T ASME 2018;140.

123. Martynova LA, Rozengauz MB. Approach to reconfiguration of a motion control system for an autonomous underwater vehicle. Gyroscopy Navig 2020;11:244-53.

124. Liu X, Zhang M, Yao F. Adaptive fault tolerant control and thruster fault reconstruction for autonomous underwater vehicle. Ocean Eng 2018;155:10-23.

125. Omerdic E, Roberts G. Thruster fault diagnosis and accommodation for open-frame underwater vehicles. Control Eng Pract 2004;12:1575-98.

126. Podder TK, Antonelli G, Sarkar N. Fault tolerant control of an autonomous underwater vehicle under thruster redundancy: simulations and experiments. In: Proc IEEE International Conference on Robotics and Automation (ICRA), 2000, 2: 1251-6.

127. Zhang S, Wu Y, He X, Liu Z. Cooperative fault-tolerant control for a mobile dual flexible manipulator with output constraints. IEEE Trans Autom Sci Eng 2021; doi: 10.1109/TASE.2021.3102588.

128. Wen Q, Kumar R, Huang J. Framework for optimal fault-tolerant control synthesis: maximize prefault while minimize post-fault behaviors. IEEE Trans Syst Man Cybern, Syst 2014;44:1056-66.

129. Stewart W, Weisler W, MacLeod M, et al. Design and demonstration of a seabird-inspired fixed-wing hybrid UAV-UUV system. Bioinsp Biomim 2018;13:056013-28.

130. Yang Q, Parasuraman R. Needs-driven heterogeneous multi-robot cooperation in rescue missions. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). USA; 2020. pp. 252-59.

131. Liang H, Fu Y, Kang F, Gao J, Qiang N. A behavior-driven coordination control framework for target hunting by UUV intelligent swarm. IEEE Access 2020;8:4838-59.

132. Shen C, Buckham B, Shi Y. Modified C/GMRES algorithm for fast nonlinear model predictive tracking control of AUVs. IEEE Trans Control Syst Technol 2017;25:1896-1904.

133. Reed S, Ruiz IT, Capus C, Petillot Y. The fusion of large scale classified side-scan sonar image mosaics. IEEE Trans Image Process 2006;15:2049-60.

134. Coiras E, Mignotte PY, Petillot Y, Bell J, Lebart K. Supervised target detection and classification by training on augmented reality data. IET Radar Sonar Navig 2007;1:83-90.

135. Williams DP. Fast target detection in synthetic aperture sonar imagery: a new algorithm and large-scale performance analysis. IEEE J Ocean Eng 2015;40:71-92.

136. Hou GJ, Luan X, Song DL, Ma XY. Underwater man-made object recognition on the basis of color and shape features. J Coast Res 2016;32:1135-1141.

Intelligence & Robotics
ISSN 2770-3541 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/